In collaboration with Payame Noor University and Iran Educational Psychology Association

Document Type : Research

Authors

1 Ph.D., Student, Educational Psychology, Kharazmi University, Tehran, Iran

2 Professor, Educational Psychology, Kharazmi University, Tehran, Iran

3 Associate Professor, Psychology, Kharazmi University, Tehran, Iran

4 Assistant Professor, Educational Psychology, Kharazmi University, Tehran, Iran

Abstract

One of the main challenges in learning environments is learners' mastery of educational content and the application of new knowledge in real life. Generative learning involves actively making sense of to-be-learned information by mentally reorganizing and integrating it with one’s prior knowledge, thereby enabling learners to apply what they have learned to new situations. Due to the novelty of the concept of generative processing, there is a need for additional research on methods to enhance this type of learning.Therefore, the present study tried to identify and explain the strategies for strengthening generative processing (GL) through germane cognitive load (GCL). The research method was qualitative, conducted with thematic analysis method. The study area was all written and digital Persian and English materials on GCL. Considering the theoretical saturation in the last ten years, thirty two papers were selected and analyzed as the sample, according to the professors using content analysis and purposive approach in the field of GL and cognitive load. The results were categorized as basic themes (codes and key points of the text), organizational themes (themes obtained from the composition and summarizing the basic themes) and inclusive themes (excellent themes containing the principles governing the text as a whole) and the network of themes was planned. After data analysis, five main themes including multimedia application, personalization, feedback, thought and guided learning, and 53 sub-themes emerged that strengthen optimal generative processing and cognitive load.

Keywords

رضازاده شرمه. محمد، هاشمی, سهیلا (1399). مقایسه تاثیر روش‌های آموزش مبتنی بر نظریه بارشناختی، چندرسانه‌ای و سخنرانی بر یادگیری درس علوم دانش‌آموزان. فصلنامه علمی، پژوهش در یادگیری آموزشگاهی و مجازی.doi: 10.30473/etl.2020.54246.3283
حسین بگلو، کوروش؛ پیری، موسی؛ یاری، جهانگیر؛ رضایی، اکبر (1398). طراحی آموزش چندرسانه‌ای مبتنی بر نظریۀ بار شناختی سوئلر و تعیین تأثیر آن بر درگیری تحصیلی و انتقال یادگیری درس ریاضی در فراگیران پایه سوم ابتدایی. فصلنامه علمی، پژوهش در یادگیری آموزشگاهی و مجازی، (6 شماره 4 (بهار 1398)), 31-44.doi: 10.30473/-etl.2019.5792
 
 
Aldekhyi, S. Cavalcani, R. Nasmithis, L. (2018). Cognitive load predicts point-of-care ultrasound simulator performance. 10.1007/-s40037-017-0392-7
Alemdag and Cagiltay. (2018). A systematic review of eye tracking research on multimedia learning. 10.1016/j.compedu.2018.06.-023
Anmarkrud, Andresen & Bråten. (2019). Cognitive Load and Working Memory in Multimedia Learning: Conceptual and Measurement Issues: Educational Psychologist, Online first
Anmarkrud, I. Andersen, A. Braten, I. (2019). Cognitive Load and Working Memory in Multimedia Learning: Conceptual and Measurement Issues. 10.1080/00461520.-2018.-1554484
Attride-Stirling, J. (2001), “Thematic Networks: An Analytic Tool for Qualitative Research”, Qualitative Research, Vol. 1, No. 3, Pp. 385-405
Beckers, J. D Dolmans, J Van Merriënboer. (2016). E-Portfolios enhancing students’ self-directed learning: A systematic review of influencing factors. Australasian Journal of Educational Technolog
Boyatzis, R.E. (1998), Transforming qualitative information: thematic analysis and code development, Sage.
Bruin, A. van Merriënboer, JG. (2018). Bridging Cognitive Load and Self-Regulated Learning Research: A complementary approach to contemporary issues in educational research.https://doi.org/10.1016/j.learninstruc.2017.06.001Get rights and content
Brünken, R., Seufert, T., & Paas, F. (2010). Measuring cognitive load. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory (pp. 181–202). Cambridge, NY: Cambridge University Press
Castro-Alonso, J.C., Wong, A., Adesope, O.O., Ayres, P., & Paas, F. (2019). Gender imbalance in instructional dynamic versus static visualizations: a meta-analysis. Educational Psychology Review, 31, 1–27.
Cheon, J. Grant, M. (2012). The effects of metaphorical interface on germane cognitive load in Web-based instruction. 10.1007/s11423-012-9236-7
Clark, R., Mayer, R.E. (2016). E-learning and the science of instruction: Proven guidelines for consumers. Hoboken, NJ: John Wiley & Sons.Google Scholar
De Jong, T. (2010). Cognitive load theory, educational research, and instructional design. Instructional Science, 38, 105–134. doi:10.1007/s11251-009-9110-0 [Crossref], [Web of Science ®], [Google Scholar]
Debue, N. Leemput, C. (2014). What does germane load mean? An empirical contribution to the cognitive load theory. https://doi.org/-10.3389/fpsyg.2014.01099
DeLeeuw, K.E., & Mayer, R.E. (2008). A comparison of three measures of cognitive load:
Denzin,K. Lincoln,S (2017). Handbook of Qualitative Research.SAGE Publication.
DeStefanoJo, D. LeFevre, L. (2007). Cognitive load in hypertext reading: A review. Computers in Human Behavior Volume 23, Issue 3, May 2007, Pages 1616-1641. Educational Psychology, 100, 223–234
Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28 (4), 717-741.
Fiorella,l. Mayer,RE (2015).Learning as a generative activity.Cambridge University Press
Fishburn, F. A., Norr, M. E., Medvedev, A. V., & Vaidya, C.J. (2014). Sensitivity of fNIRS 526 to cognitive state and load. Frontiers in human neuroscience, 8, 76.
Große, A Renkl. (2007). Finding and fixing errors in worked examples: Can this foster learning outcomes? Learning and instruction 17 (6), 612-634
Hefter, I ten Hagen, C Krense, K Berthold, A Renkl. (2019). Effective and efficient acquisition of argumentation knowledge by self-explaining examples: Videos, texts, or graphic novels?. Journal of Educational Psychology 111 (8), 1396
Hellenbrand, RE Mayer, M Opfermann, A Schmeck, D Leutner. (2019). How generative drawing affects the learning process: An eye‐tracking analysis. Applied Cognitive Psychology 33 (6), 1147-1164
Hughes, M. Factors, H. (2019). Cardiac Measures of Cognitive Workload: A Meta-Analysis. 10.1177/0018720819830553
Kalyuga S. (2016). 'Enhancing the Effectiveness of Educational Hypermedia: A Cognitive Load Approach', in Neto FMM; de Souza R; Gomes AS (ed.), Handbook of Research on 3-D Virtual Environments and Hypermedia for Ubiquitous Learning, edn. Advances in Game-Based Learning, IGI Global, Hershey, PA, pp. 387 - 409, http://dx.doi.org/10.-4018/978-1-5225-0125-1.ch016
Kalyuga S; Plass J. (2018). 'Cognitive Load as a Local Characteristic of Cognitive Processes: Implications for Measurement Approaches', in Zheng R (ed.), Cognitive Load Measurement and Application: A Theoretical Framework for Meaningful Research and Practice, Routledge, New York, NY, pp. 59 - 74, http://dx.doi.org/10.4324/9781315296258
King, N., & Horrocks, C. (2010). Interviews in qualitative research, London: Sage.
Kirschner, F., Pass, F., & Kirschner, P. (2011). Task Complexity as a Driver for Collaborative Learning Efficiency: The Collective Working-Memory Effect. Applied Cognitive Psychology, 25: 615–624 (2011).
Kirschner, P.A., Sweller, J., Kirschner, F., & Zambrano, R.J. (2018). From cognitive load theory to collaborative cognitive load theory. International Journal of Computer-SupportedCollaborative Learning, 13 (2), 213–233. doi:10.1007/s11412-018-9277-y.
Klepsch, M. Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load.
Korbach,. Brünken, A. Park, B. (2017). Measurement of cognitive load in multimedia learning: a comparison of different objective measures. Instructional Science volume 45, pages515–536
Korbach, A. Brunken, R. Park, B. (2017). Differentiating Different Types of Cognitive Load: a Comparison of Different Measures. Educational Psychology Review
Lai, AF. Chen ,C H. Lee, G. (2019). An augmented reality‐based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. https://doi.org/10.1111/-bjet. 12716
Lai, J. Bower. M. (2019). How is the use of technology in education evaluated? A systematic review. Computers & Education Volume 133, Number 1, May 2019 ISSN 0360-1315 Publisher: Elsevier Ltd
Leopold, C., & Mayer, R. E. (2015). An imagination effect in learning from scientific text. Journal of Education and Psychology, 107, 47–63. doi:10.1037/a003714
Leppink, J. (2017). Cognitive load theory: Practical implications and an important challenge. https://doi.org/10.1016/j.jtumed.2017.05.003
Leppink, JT. Van Gog, F. Paas, J. Sweller (2015). Cognitive load theory: researching and planning teaching to maximise learningJ. Cleland, S.J. Durning (Eds.), Researching medical education, Wiley & Blackwell, Chichester (2015), pp. 207-218
Leppink,J A. Van den Heuvel. (2015). The evolution of cognitive load theory and its application to medical education. Perspect Med Educ, 4 (2015), pp. 119-127
Mayer, R. E. (Ed.). (2014). The Cambridge handbook of multimedia learning (2nd Rev ed.). New York :Cambridge University Press
Moreno, R., & Mayer, R. E. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19, 309–326
Moreno, R., & Park, B. (2010). Cognitive load theory: Historical development and relation to other theories. In J.
NikouS. Economides, A. (2018). Mobile-Based micro-Learning and Assessment: Impact on learning performance and motivation of high school students
Plass, J., Moreno, R., & Brünken, R. (Eds.). (2010). Cognitive load theory. New York: Cambridge University Press.
Plass, J. Kalyuga, S. (2019). Four Ways of Considering Emotion in Cognitive Load Theory. 10.1007/s10648-019-09473-5
Ponce,HR. Mayer, Loyola, MJ López. (2020). Study Activities That Foster Generative Learning: Notetaking, Graphic Organizer,
Schalk, J Roelle, H Saalbach, K Berthold, E Stern, A Renkl. (2020). Providing worked examples for learning multiple principles. Applied Cognitive Psychology
Schroeder, N. Cenkci, A. (2018). Spatial Contiguity and Spatial Split-Attention Effects in Multimedia Learning Environments: a Meta-Analysis. Educational Psychology Review volume 30, pages679–701
Schunk, D.H. (2016). Learning theories: An educational perspective (7thed). Boston: Pearson Press.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational. Psychology Review, 22, 123–138.
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer.
Sweller, J., Van Merriënboer, J.J.G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.
Sweller, J., van Merriënboer, J.J.G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10 (3), 251–296. https://doi.org/10.-1023/A:1022193728205.
Sweller, J. van Merriënboer, J. Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review (2019) 31:261–292.https://doi.org/-10.1007/s10648-019-09465-5
Szulewski, A. Howes, D. van Merriënboer, JG, Sweller, J. (2020). From Theory to Practice: The Application of Cognitive Load Theory to the Practice of Medicine. Academic Medicine: Journal of the Association of American Medical Colleges
Tindall-Ford, sh. Agostinho,sh. Sweller, J. (2020). Advances in Cognitive Load Theory. First published 2020by Routledge. https://lccn.loc.gov/2019004035
Van Gog, T. H Jarodzka. (2013). Eye Tracking as a Tool to Study and Enhance Cognitive and Metacognitive Processes in Computer-Based Learning Environments. Researching Medical Education.
Van Merriënboer, GJ. Sweller, H. (2006). Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions. https://link.springer.com/article/10.1007/s10648-005-3951-0.