شناسایی زیرگونه‌های ناتوانی یادگیری ریاضی در دانش‌آموزان ایرانی: رویکرد خوشه‌بندی مدل- مبنا

نوع مقاله : پژوهشی

نویسندگان

1 دکتری روان‌شناسی تربیتی، دانشگاه خوارزمی، تهران، ایران

2 گروه روانشناسی تربیتی، دانشکده روانشناسی و علوم تربیتی، دانشگاه خوارزمی، تهران، ایران

3 گروه روان‌شناسی تربیتی، دانشگاه خوارزمی، تهران، ایران

4 گروه روان‌شناسی، دانشگاه خوارزمی، تهران، ایران

چکیده

چکیده
هدف پژوهش حاضر شناسایی زیرگونه‌های شناختی ناتوانی ریاضی با استفاده از خوشه‌بندی مدل- مبنا در یک نمونه بالینی بود. شرکت­کنندگان پژوهش 41 دانش‌آموز دارای ناتوانی ریاضی مشغول به تحصیل در پایه‌های سوم، چهارم و پنجم با میانگین سنی 93/9 سال و انحراف استاندارد سنی 11/1 (33/13 ماه) بودند که در مراکز درمان ناتوانی یادگیری آموزش و پرورش به عنوان ناتوان در یادگیری ریاضی آموزش ویژه دریافت می‌کردند. شرکت کنندگان در دو جلسه به صورت انفرادی با استفاده از مجموعه‌ای از آزمونها و تکالیف شناختی حوزه‌- عام و حوزه-ویژه‌ی مداد-کاغذی و رایانه‌ای ارزیابی شدند. خوشه‌بندی داده‌ها به روش مدل- مبنا حاکی از وجود چهار خوشه مجزا از دانش‌آموزان بود که روایی آماری و تجربی آنها مورد تایید قرار گرفت: نقص دسترسی (1/31 درصد)، نقص دیداری- ‌فضایی (8/26 درصد)، نقص سرعت پردازش و کنش‌های اجرایی (8/26 درصد)، نقص سیستم عددی تقریبی (ANS) (2/12 درصد). این یافته‌ها  دلالت‌هایی برای ارائه تعاریف ایجابی از ناتوانی ریاضی دارد و می‌تواند برای تدارک مداخله‌های متناسب با هر زیرگونه پژوهش‌های بعدی را برانگیزد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying Subtypes of Mathematical learning Disability in Iranian Students: Model-Based Clustering Approach

نویسندگان [English]

  • Mohammad Javad Yazdani 1
  • Hamidreza Hassanabadi 2
  • Parvin Kadivar 3
  • Mohamdhosein Abdollahi 4
1 Ph.D in Educational Psychology, Kharazmi University, Tehran, Iran
2 Department of Educational Psychology, Faculty of Psychology and Education, Kharazmi University, Tehran, Iran
3 Department of Educational Psychology, Kharazmi University, Tehran, Iran
4 Department of Psychology, Kharazmi University, Tehran, Iran
چکیده [English]

The aim of the present study was identifying cognitive subgroups of mathematical disability using model- based clustering in a clinical sample. Participants were 41 mathematical disabled students studying in third, fourth, and fifth grades with mean age of 9.93 years and age standard deviation of 1.11 years (13.33 months) that received special education as learning disables in the centers of learning disabilities treatment of education organization. Utilizing a battery of paper and pencil and computerized tests and tasks, the researchers assessed participants individually during two sessions. Model- based data clustering revealed four distinct clusters of students that their statistical and empirical validity was confirmed: symbolic processing deficit (31.1 percent), visuo-spatial deficit (26.8 percent), executive functions and processing speed deficit (26.8 percent), non-symbolic processing deficit (12.2 percent). These results have implications for presenting positive definitions of mathematical learning disability and are able to motivate future researches for preparing interventions appropriate to each subgroups.

کلیدواژه‌ها [English]

  • Number Processing
  • Cognitive Subgroups
  • Domain-General Cognition
  • Executive Functions
  • Mathemati-cal Learning Disability
اسلامی، پروانه و حسن‌آبادی، حمیدرضا (1396). مهارت‌های اختصاصی پردازش عدد در دانش‌آموزان پسر با ناتوانی یادگیری ریاضی. فصلنامه کودکان استثنایی، 17 (2)، 67-85.
امین زاده، انوشه و حسن‌آبادی، حمیدرضا (1389). نارسایی‌های شناختی زیربنایی در ناتوانی ریاضی. روان‌شناسی تحولی. 6(23)، 187-200.
امین‌‌زاده، انوشه و حسن‌آبادی، حمیدرضا (1391). توانایی شاخص‌های آزمون نام‌ بردن احتمالی در پیش‌بینی عملکرد ریاضی. روان‌شناسی معاصر، 8(1)، 47-60.
خدادادی، سیدمجتبی، شاهقلیان، مهناز و امانی، حسین (1393). نرم‌افزار دسته‌‌بندی کارت ویسکانسین. تهران: موسسه تحقیقات علوم رفتاری- شناختی سینا
خدادادی، سیدمجتبی، مشهدی، علی و امانی، حسین (1393الف). نرم‌افزار استروپ ساده. تهران: موسسه تحقیقات علوم رفتاری- شناختی سینا
خدادادی، سیدمجتبی، مشهدی، علی و امانی، حسین (1393ب). نرم‌افزار عملکرد پیوسته. تهران: موسسه تحقیقات علوم رفتاری- شناختی سینا
روزبهانی، شهره و حسن‌آبادی، حمیدرضا (1394). کارکرد اجرایی مرکزی و حلقه واج‌شناختی در دانش‌آموزان ناتوان در حل مسائل کلامی ریاضی. فصلنامه کودکان استثنایی،15 (4)، 5-20.
سرمد، زهره، بازرگان، عباس و حجازی، الهه (1387). روش‌های تحقیق در علوم رفتاری. تهران: آگاه.
شریفی، ح. پ.، حسن‌‌آبادی، حمیدرضا و همکاران (1397). مقیاس هوشی وکسلر کودکان، ویرایش پنجم- نسخه ایرانی. طرح پژوهشی ملی: ستاد توسعه علوم و فناوری‌های شناختی.
شهیم، سیما (1373الف). مقیاس تجدید نظر شده هوش وکسلر برای کودکان، انطباق و هنجاریابی (چاپ سوم). شیراز: انتشارات دانشگاه شیراز.
شهیم، سیما (1373ب). بررسی فرم‌‌های کوتاه مقیاس وکسلر کودکان برای استفاده در ایران. مجله علوم اجتماعی و انسانی دانشگاه شیراز، 9(2)،67-77.
محمودعلیلو، مجید، هاشمی نصرت‌‌آباد، تورج، و فلاحی، ابوالفضل (1394). مقایسه کارکردهای اجرایی بازداری پاسخ و توجه پایدار در کودکان با ناتوانی یادگیری ریاضیات و کودکان عادی. اندیشه و رفتار، 9(35)،27-36.
هادیانفرد، حبیب، نجاریان، بهمن، شکرکن، حسین، و مهرابی زاده هنرمند، مهناز (1379). تهیه و ساخت فرم فارسی آزمون عملکرد پیوسته. مجله روان‌شناسی، 16، 388-404.
 
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Washington, DC: Author.
Andersson, U. (2010). Skill development in different components of arithmetic and basic cognitive functions: Findings from a three-year longitudinal study of children with different types of learning difficulties. Journal of Educational Psychology, 102, 115–134.
Andersson, U., & Lyxell, B. (2007). Working memory deficits in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96, 197–228.
Andersson, U., & Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22(6), 701-714.
Ashkenazi, S., & Henik, A. (2012). Does attentional training improve numerical processing in developmental dyscalculia?.
Banfield, J. D., & Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803–821.
Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in developmental disabilities, 35(3), 657-670.
Butterworth B. (2005) Developmental Dyscalculia. In: Campbell JD, editor. The Handbook of Mathematical Cognition.New York: Psychology Press. 455–469.
Cowan, R. & Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology, 106(1), 214-229.
D'Amico, A., & Passolunghi, M. C. (2009). Naming speed and effortful and automatic inhibition in children with arithmetic learning disabilities. Learning and Individual Differences, 19, 170–180.
De Smedt, B., & Boets, B. (2010). Phonological processing and arithmetic fact retrieval: evidence from developmental dyslexia. Neuropsychologia, 48(14), 3973-3981.‏
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42. doi:10.1016/0010-0277(92)90049-N.
Diamond, A. (2013). Executive Functions. Annual. Review of Psychology, 64, 135-68.‏
Fletcher, J. M., & Miciak, J. (2017). Comprehensive cognitive assessments are not necessary for the identification and treatment of learning disabilities. Archives of Clinical Neuropsychology, 32(1), 2-7.
Geary, D. C. (1993). Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychological bulletin, 114(2), 345.
Geary, D. C. (2011). Consequences, Characteristics, and Causes of Mathematical Learning Disabilities and Persistent Low Achievement in Mathematics. Journal of Developmental & Behavioral Pediatrics, 32(3), 250-263.
Geary, D. C. (2014). The classification and cognitive characteristics of mathematical disabilities in children. The Oxford handbook of mathematical cognition. Oxford, UK: Oxford Library of Psychology.doi: 10.1093/oxfordhb/9780199642342.013.017
Geary, D. C., Hoard, M. K., Byrd‐Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child development, 78(4), 1343-1359.‏
Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2012). Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. Journal of educational psychology, 104(1), 206-223.‏
Georgiou, G. K., Tziraki, N., Manolitsis, G., & Fella, A. (2013). Is rapid automatized naming related to reading and mathematics for the same reason (s)? A follow-up study from kindergarten to Grade 1. Journal of Experimental Child Psychology, 115(3), 481-496.
Ginsburg, H. P. (1997). Mathematics learning disabilities: a view from developmental psychology. Journal of Learning Disabilities, 30, 20-33.
Halberda, J., Mazzocco, M., & Feigenson, L. (2008). Individual differences in nonverbal number acuity predict maths achievement. Nature, 455, 665-668.
Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: A longitudinal study from second to fifth grades. Journal of Experimental Child Psychology, 79(2), 192-227.
Henik, A., Rubinsten, O., & Ashkenazi, S. (2011). The “where” and “what” in developmental dyscalculia. The Clinical Neuropsychologist, 25(6), 989-1008.‏
Howes, n. L., Bigler, E. D., Lawson, J. S., & Burlingame, G. M. (1999). Reading disability subtypes and the test of memory and learning. Archives of Clinical Neuropsychology, 14(3), 317-339.
IBM Corp (2016). IBM SPSS statistics for Windows. Version 24.0. Armonk,NY: IBM Corp.
Johnson, E. S., Humphrey, M., Mellard, D. F., Woods, K., & Swanson, H. L. (2010). Cognitive processing deficits and students with specific learning disabilities: A selective meta-analysis of the literature. Learning Disability Quarterly, 33(1), 3-18.
Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in human neuroscience, 8, 1-5.
Kaufmann, L., Mazzocco, M.M., Dowker, A., von Aster, M., Goebel, S., Grabner, R., Henik, A... Nuerk, H. C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, 1-5. Doi: 10.3389/fpsyg.2013.00516
Landerl, K., Fussengger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309-324.
Mammarella,I.C.,Lucangeli,D., & Cornoldi, C. (2010).Spatial working memory and arithmetic deficits in children with nonverbal learning difficulties. Journal of learning disabilities43, 455–468.
Mayer, R. E. (2008). Applying the Science of Learning: Evidence-Based Principles for the Design of Multimedia Instruction. American Psychologist, 63(8), 760-769.‏
Mazzocco, M. M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school-age years. Annals of dyslexia, 53(1), 218-253.
Moll, K., Göbel, S. M., & Snowling, M. J. (2015). Basic number processing in children with specific learning disorders: comorbidity of reading and mathematics disorders. Child Neuropsychology, 21(3), 399-417.‏
Mun, E. Y., von Eye, A., Bates, M. E., & Vaschillo, E. G. (2008). Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. Developmental Psychology, 44(2), 481.
Olsson, L., Östergren, R., & Träff, U. (2016). Developmental dyscalculia: A deficit in the approximate number system or an access deficit? Cognitive Development, 39, 154-167.‏
Passolunghi, M. C., & Lanfranchi, S. (2012). Domain‐specific and domain‐general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 42-63.‏
Peng, P., & Fuchs, D. (2016). A Meta-Analysis of Working Memory Deficits in Children With Learning Difficulties Is There a Difference Between Verbal Domain and Numerical Domain? Journal of Learning Disabilities, 49(1), 3-20.‏
Peterson, R. L., Boada, R., McGrath, L. M., Willcutt, E. G., Olson, R. K., & Pennington, B. F. (2016). Cognitive Prediction of Reading, Math, and Attention: Shared and Unique Influences. Journal of learning disabilities, 1-14.
Pieters, S., Roeyers. H., Rosseel, Y., Van Waelvelde, H., & Desoete, A. (2015). Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. Journal of Learning Disabilities, 48(1), 83-95. Doi: 10.1177/0022219413491288
Poletti, M., Carretta, E., Bonvicini, L., & Giorgi-Rossi, P. (2018). Cognitive clusters in specific learning disorder. Journal of learning disabilities, 51(1), 32-42.
Price, G. R., & Ansari, D. (2013). Dyscalculia: Characteristics, Causes, and Treatments. Numeracy: Advancing Education in Quantitative Literacy, 6(1), 1-16.doi: 10.5038/1936-4660.6.1.2
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Raddatz, J., Kuhn, J. T., Holling, H., Moll, K., & Dobel, C. (2016). Comorbidity of Arithmetic and Reading Disorder Basic Number Processing and Calculation in Children with Learning Impairments. Journal of learning disabilities, 0022219415620899.‏
Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395.‏
Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences, 13, 92–99.doi: 0.1016/j.tics.2008.11.002
Scanlon, D. (2013). Specific Learning Disability and Its Newest Definition Which Is Comprehensive? And Which Is Insufficient? Journal of Learning Disabilities, 46(1), 26-33.‏
Scrucca L., Fop M., Murphy T. B. & Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal 8)1), 205-233
Shin, M., & Bryant, D. P. (2013). A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities. Journal of learning disabilities, 48(1), 96-112. Doi: 0022219413508324.
Suveg, C., Jacob, M. L., Whitehead, M., Jones, A., & Kingery, J. N. (2014). A model-based cluster analysis of social experiences in clinically anxious youth: links to emotional functioning. Anxiety, Stress, & Coping, 27(5), 494-508.
Szucs, D. (2016). Subtypes and comorbidity in mathematical learning disabilities: Multidimensional study of verbal and visual memory processes is key to understanding. Progress in Brain Research, 227, 277–304.
Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49, 2674-2688.‏
Tolar, T. D., Fuchs, L., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2016). Cognitive Profiles of Mathematical Problem Solving Learning Disability for Different Definitions of Disability. Journal of Learning Disabilities, 49(3), 240-256.‏ 10.1177/0022219414538520
Toll, S. W., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44(6), 521-532.‏
Träff, U., & Passolunghi, M. C. (2015). Mathematical skills in children with dyslexia. Learning and Individual Differences, 40, 108-114.‏
van der Sluis, S., de Jong, P. F., & van der Leij, A. (2004). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of experimental child psychology, 87(3), 239-266.‏
Vanbinst, K., Ceulemans, E., Ghesquière, P., & De Smedt, B. (2015). Profiles of children’s arithmetic fact development: A model-based clustering approach. Journal of Experimental Child Psychology 133, 29–46. Doi: 10.1016/j.jecp.2015.01.003
Vanbinst, K., Ceulemans, E., Ghesquière, P., & De Smedt, B. (2015). Profiles of children’s arithmetic fact development: A model-based clustering approach. Journal of Experimental Child Psychology 133, 29–46. Doi: 10.1016/j.jecp.2015.01.003
von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child and Adolescent psychiatry, 9, 41–57.
Watson, S. M. R., & Gable, R. A. (2013). Unraveling the Complex Nature of Mathematics Learning Disability: Implications for Research and Practice. Learning Disability Quarterly, 36(3), 178-187. Doi: 10.1177/0731948712461489
Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., DeFries, J. C., Olson, R. K., & Pennington, B. F. (2013). Comorbidity between reading disability and math disability: Concurrent psychopathology, functional impairment, and neuropsychological functioning. Journal of learning disabilities, 46(6), 500-516.