ارائة مدل علّی روابط جذب شناختی، نیاز به شناخت و سودمندی ادراک شده یادگیری در واقعیت افزوده: نقش واسطه‌ای خودکارآمدی و درگیری شناختی

نوع مقاله : پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، برنامه ریزی آموزش از دور، دانشگاه پیام نور، تهران، ایران

2 دانشیار گروه علوم تربیتی، دانشگاه پیام نور، تهران، ایران

3 استاد گروه علوم تربیتی، دانشگاه پیام نور، تهران، ایران

چکیده

پژوهش حاضر با هدف ارائه مدل علّی روابط جذب شناختی، نیاز به شناخت و سودمندی ادراک شده یادگیری از طریق واقعیت افزوده (نقش واسطه‌ای خودکارآمدی موبایلی و درگیری شناختی) به روش توصیفی-همبستگی انجام گرفت. برای این منظور، از بین استان‌های نواحی غربی ایران، سه استان (همدان، کرمانشاه و چهارمحال و بختیاری) و تعداد 600 دانشجوی دانشگاه پیام نور، به روش خوشه‌ای چند مرحله‌ای تصادفی، بر اساس فرمول کوکران انتخاب و پس از به کارگیری برنامة واقعیت افزوده، به یک پرسش‌نامه 52 گویه‌ای که تلفیقی از پرسش‌نامه‌های سودمندی ادراک شده دیویس (1989)، نیاز به شناخت کاچیوپو و پتی (1982)، درگیری شناختی آلوکا و اودونگو (2018)، مقیاس خودکارآمدی موبایلی ماهات، مهد ایوب و وانگ (2012) و مقیاس جذب شناختی آگاروال و کاراهانا (2000) بود پاسخ دادند که از آن میان، 556 پرسش‌نامه تکمیل و به پژوهشگر بازگردانده شد. دادها با استفاده از تحلیل عاملی تأییدی، محاسبه ضرایب آلفای کرونباخ و تحلیل مسیر، به وسیلة نرم‌افزارهای Amos 22, Lisrel 8.50 ,Spss 22 مورد تجزیه و تحلیل قرار گرفتند. نتایج نشان داد که متغیرهای جذب شناختی و نیاز به شناخت به صورت مستقیم و غیرمستقیم از طریق واسطه‌گری متغیرهای خودکارآمدی موبایلی و درگیری شناختی بر سودمندی ادراک شده یادگیری از طریق واقعیت افزوده، در بین دانشجویان دورة کارشناسی اثر معنادار دارند. همچنین بررسی شاخص‌های برازندگی نشان داد که مدل پیشنهادی پژوهش، با داده‌های گردآوری شده از دانشجویان دانشگاه پیام نور، برازش مناسبی دارد؛ بنابراین می‌توان نتیجه گرفت این مدل می‌تواند اطلاعات مهم و مورد نیاز را برای همة دست‌اندرکاران امر تعلیم و تربیت در جهت بهبود پیامدهای آموزش و یادگیری فراهم کند.

کلیدواژه‌ها


عنوان مقاله [English]

Presenting the Casual Model of Cognitive Absorption, Need for Cognition and Perceived Enjoyment of Learning Via Augmented Reality (AR): Mediating Role of Mobile Self-Efficacy and Academic Engagement

نویسندگان [English]

  • Maryam Darvishi 1
  • mohammad hassan Seif 2
  • Mohammad Reza Sarmadi 3
  • mehran farajollahi 3
1 PhD graduated in distance education, Payame Noor University, Tehran, Iran
2 Associate Professor of Educational Sciences, Payame Noor University, Tehran, Iran
3 Professor of Educational Sciences, Payame Noor University, Tehran, Iran
چکیده [English]

The main purpose of this study was presenting the casual model of cognitive absorption, need for cognition and perceived enjoyment of learning via Augmented Reality (AR) (mediating role of mobile self-efficacy and academic engagement) with a descriptive and correlation method. For this purpose 3 western provinces (Hamedan, Kermanshah and Chaharmahal-o Bakhtiari) were randomly selected and 600 undergraduate students were selected through randomized multistage cluster sampling on the basis of Cochran's formula and after using AR application , the students completed a 52 item questionnaire that was an integration of following questionnaires: perceived usefulness (Davis, 1989), need for cognition (Cacioppo & Petty, 1982) cognitive engagement (Aloka & Odongo, 2018), mobile self- efficacy (Mahat, Mohd Ayub & Wong, 2012) and cognitive absorption (Agarwal, R., & Karahanna, 2000). After completing the questionnaire, 556 questionnaires were returned to the researcher and data were analyzed through confirmatory factor analysis, Cronbach's alpha coefficients and path analysis using Amos 22, Lisrel 8.50 and Spss 22. The findings showed that cognitive absorption and need for cognition had a direct and indirect effect on perceived usefulness with mediating role of mobile self- efficacy and cognitive engagement. Also, the obtained results for the fit indices of the proposed model showed that it had a good fit with the data collected from the respondents. Therefore, this model can provide educators and education leaders with critical information for improving learning outcomes.

کلیدواژه‌ها [English]

  • Augmented Reality
  • Cognitive absorption
  • need for cognition
  • Cognitive engagement
  • self- efficacy
  • Perceived usefulness
امیدیان، مرتضی؛ عبداللهی طرزجان، زهرا و رحیمی، مهدی (1396). رابطه حمایت اجتماعی ادراک شده و درگیری شناختی با واسطه گری خودکارآمدی. مطالعات روان‌شناسی تربیتی، 28، 1- 20.
بورقانی فراهانی، المیرا (1394). شبیه‌سازی شاختار عصبی بدن انسان با استفاده از تکنیک واقعیت افزوده برای آموزش دانشجویان دانشجویان پزشکی. پایان‌نامه کارشناسی ارشد، دانشگاه قم، دانشکده فنی و مهندسی.
حسینی، فریده سادات؛ لطیفیان، مرتضی (1388). پنج عامل بزرگ شخصیت و نیاز به شناخت. فصلنامة روان‌شناسان ایرانی.6 (21). 61-68.
حقیقی، سلیم؛ مکتبی، غلامحسین؛ شهنی ییلاق، منیجه؛ حاجی یخچالی، علیرضا (1397). تأثیر یک مداخله مبتنی بر نظریة چشم انداز آینده بر انگیزش پیشرفت، خودکارآمدی تحصیلی و چشم انداز زمان. فصلنامة علمی پژوهشی پژوهش در یادگیری آموزشگاهی و مجازی، 6 (2)، 48-33.

داوودی، سمیه (1393). ارائة مدل پیش‌بینی پیشرفت تحصیلی زبان انگلیسی با تأکید بر نقش خودکارآمدی تحصیلی، درگیری شناختی، انگیزشی و رفتاری. فصلنامة پژوهش در یادگیری آموزشگاهی و مجازی، 1 (4)، 69-76.

رستگار، احمد (1396). ارائه مدل علّی روابط نیاز به شناخت و درگیری شناختی با نقش واسطه‌ای اهداف پیشرفت و هیجانات تحصیلی. دو فصلنامه علمی- پژوهشی شناخت اجتماعی، 6 (1)، 9-26.

رفیع زاده اخویان، ریحانه؛ جوانی، اصغر؛ صافیان، محمدجواد و شیروانی، محمدرضا (1395). تبیین هنر واقعیت افزوده و نسبت آن با جهان واقعی. فصلنامة علمی پژوهشی کیمیای هنر. سال پنجم. شماره20.
زارعی، صغری (1394). مدل بسط یافته عوامل مؤثر بر تمایل استفاده از فناوری اطلاعات و ارتباطات (ICT) در بین دبیران شهرستان شیراز. پایان‌نامه کارشناسی ارشد، دانشگاه پیام نور.
صیف، محمد حسن (1394). ارائه الگوی روابط علّی جهت‌گیری هدف تحصیلی و درگیری شناختی: نقش واسطه‌ای هیجان‌های تحصیلی و خودکارآمدی تحصیلی. دوفصلنامه علمی- پژوهشی شناخت اجتماعی، 4 (2)، 7-21.
صیف، محمد حسن (1397). ارائه مدل روابط علّی جذب شناختی و یادگیری ادراک شده: نقش واسطه‌ای درگیری شناختی، سهولت و سودمندی ادراک شده. دوفصلنامه علمی- پژوهشی شناخت اجتماعی، 7 (2)، 107-122.
فتحی، رضا و صیف، محمد حسن (1396). مدل علّی پذیرش و به کارگیری یادگیری مجازی در کارکنان: نقش تناسب فناوری- شغل، خودکارآمدی و هنجار ذهنی. فصلنامه آموزش و توسعه منابع انسانی، 4 (12)، 149-165.
قنبرپور، سولماز (1393). نیازسنجی و امکان سنجی به کارگیری فناوری واقعیت افزوده در کتابخانه‌های دانشگاهی: دیدگاه متخصصان شاغل در کتابخانه‌های مرکزی دانشگاه‌های دولتی شهر تهران. پایان‌نامه کارشناسی ارشد، دانشگاه الزهرا (س).
مظلومیان، سعید؛ رستگار، احمد؛ صیف، محمدحسن؛ قربان جهرمی، رضا. نقش باورهای انگیزشی و درگیری شناختی بین پیشرفت تحصیلی قبلی و پیشرفت تحصیلی فعلی (الگوی تحلیل). فصلنامه علمی پژوهشی پژوهش در یادگیری آموزشگاهی و مجازی، 1 (4)، 54-42.
مهدوی راد، حجت؛ فرزاد، ولی الله؛ کوشکی، شیرین (1398). تبیین مدل عملکرد تحصیلی بر اساس انگیزش تحصیلی، اهداف پیشرفت، خودکارآمدی تحصلی با میانجی‌گری درگیری تحصیلی در دانش‌آموزان متوسطة دوم. فصلنامة علمی پژوهشی پژوهش در یادگیری آموزشگاهی و مجازی، 7 (3)، 23-36.
مهنا، سعید؛ طالع پسند، سیاوش؛ رستمی، شهلا (1399). هویت تحصیلی، انگیزش درونی و خودکارآمدی به عنوان پیش‌بینی‌کننده‌های درگیری شناختی عمیق. فصلنامة پژوهش در نظام‌های آموزشی، 14 (48)، 7-22.
مؤمنی، خدامراد و فرناز رادمهر (1397). پیش‌بینی درگیری تحصیلی بر اساس سازه‌های خودکارآمدی و خود ناتوان‌سازی تحصیلی دانشجویان علوم پزشکی. فصلنامة پژوهش در آموزش علوم پزشکی، 11 (4)، 41-50. http://dx.doi.org/10.29252/rme.10.4.41
نگهداری، سمیه؛ صیف، محمدحسن؛ فرج اللهی، مهران؛ رستگار، احمد (1397). ارائه مدل علّی یادگیری ادراک شده مبتنی بر بازی‌های دیجیتال. فصلنامة علمی پژوهشی پژوهش در یادگیری آموزشگاهی و مجازی، 1 (21)، 119-105.
نوروزی، محسن؛ سامانی، بهزاد؛ لطفی، احسان (1396). واقعیت افزوده و کاربردهای آن. سومین کنفرانس ملی نوآوری و تحقیق در مهندسی برق و مهندسی کامپیوتر و مکانیک.
 
 
Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24 (4), 665-694.doi: 10.2307/3250951
Ahmad, T. B. T., Basha, K., Marzuki, A., Hisham, N. A., & Sahari, M. (2010). Faculty’s acceptance of computer based technology: Cross-validation of an extended model. Australasian Journal of Educational Technology, 26 (2), 268-279. DOI: 10. 14742/ ajet.1095
Al- Alvan, A. F., Ashraah, M. M., & Al- Nabrawi, I. M. (2013). Undergraduate Students' Level of Need for Cognition and its Relation to their Meaningful Cognitive Engagement: A Framework to Understanding Students' Motivation. European Journal of Social Sciences, 38 (1), 59-65. http://www.european-journalofsocialsciences.com
Alshibly, H. (2014). An Emprical Investigation into Factors Influencing the Intention to E-learning System: An Extended Technology Acceptance Model. British Journal of Applied Science & Technology, 4 (17), 2440-2457
Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the student engagement instrument. Journal of School Psychology, 44, 427–445. doi:10.1016/j.jsp.2006.04.002
Archambault, I., Janosz, M., Fallu, J. S., & Pagani, L. S. (2009). Student engagement and its relationship with early high school
Arpacı, D., Bardakçı, M. (2016). An Investigation on the Relationship between Prospective Teachers' Early Teacher Identity and Their Need for Cognition. Journal of Education and Training Studies, 4 (3), pp.9-19. http://jets.redfame.com
Azuma,R., Billinghurst, M.,Klinker,G. (2011). Special Section on Mobile Augmented Reality. Computers & Graphics,35,vii-viii.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84 (2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191
Botella,C. ,Lopez, J.B., . Quero,S., Banos,R. M., Palacios,A.G., Zaragoza, I.,& Alcaniz,M. (2011). Treating cockroach phobia using a serious game on a mobile phone and augmented reality exposure: A single case study. Computers in Human Behavior,27,217-227.
Bujak, K.R., Radu,I., Catrambone,R., MacIntyre,B., Zheng, R., & Golubski,G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education,68,536-544.
Cacioppo, J. T. & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42 (1), 116-131. https://psycnet.apa.org/doi/10.1037/0022-3514.42.1.116
Chandra,S., Theng, Y.L., O’Lwin, M., & Foo, S. (2009). Examining the role of cognitive absorption for information sharing in virtual worlds Proc. 59 Annual Conference of the International Communication Association (ICA), Chicago, U.S.A., May 21-25.
Chang, H. Y., Wu, H.K.,& Hsu,Y.S (2013). Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of Educational Technology,3, 95-99.
Chen, I. S. (2017). Computer self-efficacy, learning performance, and the mediating role of learning engagement. Computers in Human Behavior, 72, 362- 370. doi.org/10.1016/j. chb.2017.02.059
Chou, C. M., Hsiao, C. H., Shen, H. C., & Chen, S. G. (2010). Analysis of factors in technological and vocational school teachers' perceived organizational innovative climate and continuous use of e-teaching: Using computer self-efficacy as an intervening variable. The Turkish Online Journal of Educational Technology, 9 (4), 35-48.
Claggett, J. L., & Goodhue, D. L. (2011). Have is researchers lost bandura's self-efficacy concept? A discussion of the definition and measurement of computer self-efficacy. In Proceedings of the 44th Hawaii International Conference on System Science, Kauai, HI, January 4-7, 1-10. doi: 10.1109/HICSS. 2011.219
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Developmental of a measure and initial test. MIS Quarterly, 19 (2), 189-211. doi.org/10.2307/249688
Csikszentmihalyi, M. (1988). The flow experience and its significance for human psychology. In M. Csikszentmihalyi & I. S. Csikszentmihalyi (Eds.), Optimal experience: Psychological studies of flow in consciousness. Cambridge, UK:Cambridge University Press,15–35.
Cybinski, P., & Selvanathan, S. (2005). Learning experience and learning effectiveness in undergraduate statistics: Modeling performance in traditional and flexible learning environments. Decision Sciences Journal of Innovative Education,3, 251–271.
Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 19 (3), 319-340. https://doi.org/10.2307/249008
Elias, S. M., & Loomis, R. J. (2002). Utilizing need for cognition and perceived self-efficacy to predict academic performance. Journal of Applied Social Psychology, 32 (8), 1687–1702. https://doi.org/10.1111/j.1559-1816. 2002.tb02770.x
Fecich, S., J., (2014). The use of augmented reality – enhanced reading book for vocabulary acquisition with students who are diagnosed whth spetial needs. Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, The Pennsylvania State University.
Fransson,B.A., Chen, C. Y.,Noyes,J. A., & Ragle, C.A. (2016). Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality. VeterinarSurgery, American College of Veterinary Surgeons, 1- 9.
Gatotoh, A.M., Gakuu, C. M., & Keiyoro, P. N. (2018). Learner self-efficacy and mobile learning adoption among community health trainees, Kenya. International Journal for Advanced Research and Novelty. 40- 51.
Ghani, J. A. (1995). Flow in human-computer interactions: Test of a model. In J. M. Carey (Ed.), Human factors in information systems: Emerging theoretical bases. Norwood, NJ: Ablex Publishing Corporation, 291–309.
Guo, Y. M. & Ro, Y.K. (2008). Capturing Flow in the Business Classroom. Decision Sciences Journal of Innovative Education,6 (2). 437-462. DOI: 10.1111/j.1540-4609.2008.00185.x
Guriting, G., Chunwen, G., Ndu, N. N. O. (2007). Computer self-efficacy levels, perceptions and adoption of online banking. International Journal of Services Technology and Management, 8 (1), 54-61. doi.org/10.1504/ IJSTM.2007.012218
Hatlevik, O. E., Throndsen, I., Loi, M., & Gudmundsdottir, G. B. (2018). Students’ ICT self-efficacy and computer and information literacy: Determinants and relationships. Computers & Education, 118, 107- 119.doi.org/10.1016/j.compedu.2017.11.011
Holden, H., & Rada, R. (2011). Understanding the influence of perceived usability and technology self-efficacy on teachers' technology acceptance. Journal of Research on Technology in Education, 43 (4), 343-367. doi.org/10.1080/15391523.2011.10782576
Huang, Y., M., & Lin, P., H., (2017). Evaluating students’ learning achievement and flow experience with tablet PCs based on AR and tangible technology in u-learning. Library Hi Tech,35 (4),602-614.
Hung, C.Y., Sun, J.C.Y. and Yu, P.T. (2015), “The benefits of a challenge: student motivation and flow experience in tablet-PC-game-based learning”, Interactive Learning Environments,23, (2), 127-190.
Hwang, W.Y., & Hu, S.S. (2013). Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Computers & Education, 62, 308–319.
Jonassen, D.H., Carr, C. and Yueh, H.P. (1998), “Computers as mind tools for engaging learners in critical thinking”, TechTrends,. 43 (2), 24-32.
Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55 (2), 427–443.
Kenny, R. F., Park, C. L., Van Neste-Kenny, J. M. ., & Burton, P. A. (2010). Mobile Self Efficacy in Canadian Nursing Education Programs. Proceedings of mLearn 2010, the 9th World Conference on Mobile Learning. Valletta, Malta. Retrieved from http://hdl.handle.net/2149/2767
Koc, M., & Bakir, N. (2010). A needs assessment survey to investigate pre-service teachers’ knowledge, experiences and perceptions about preparation to using educational technologies. The Turkish Online Journal of Educational Technology, 9 (1), 13-22.
Koole, M. L. (2009). A model for framing mobile learning. In M. Ally (Ed.), Mobile learning: Transforming the delivery of education and training (pp. 25–47). Edmonton, AB: Athabasca University Press.
Kucok,S.,Kapakin,S.Goktas,Y. (2016). Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load. Anatomical Sciences Education, Research Report,1-13.
Ladd, M. (2016). Comparing The Effects of Augmented Reality Phonics And ScriptedPhonics Approaches On Achievement of At-Risk Kindergarten Students, A Dissertation Submitted to the Graduate Faculty of the University of West Georgia in Partial Fulfillment of the Requirements for the Degree of Doctor of Education.
Lapointe, L. & Rivard, S. (2007). "A Triple Take on Information System Implementation". Organization Science,18 (1), 89-107.https://doi.org/10.1287/orsc.1060.0225
Liao T (2016) Is it “augmented reality”? Contesting boundary work over the definitions and organizing visions for an emerging technology across field-configuring events. Information andOrganization26 (3): 45–62.
Lin, C. & Bhattacherjee, A. (2010). Extending technology usage models to interactive hedonic technologies: a theoretical model and empirical test. Information Systems Journal,    20 (2), 163-181. Doi: 10.1111/j.1365-2575.2007.00265.x.
Linnenbrink, E. A., & Pintrich, P. R. (2003). The role of self-efficacy beliefs in student engagement & learning in the classroom. Reading & Writing Quarterly, 19, 119-37. https://doi.org/10.1080/10573560308223
Lu, X., & Viehland, D. (2008). Factors Influencing the Adoption of Mobile Learning. 19th Australasian Conference on Information Systems (pp. 597-606). Christchurch.
Luttrell, A., Petty, R. E., and Xu, M. (2017). Replicating and fixing failed replications: the case of need for cognition and argument quality. Journal of Experimental Social Psychol. 69, 178–183.doi: 10.1016/j.jesp.2016.09.006
Mahat, J., Ayub, A. F. M., Wong, S. L. (2012). An Assessment of Students’ Mobile Self-Efficacy, Readiness and Personal Innovativeness towards Mobile Learning in Higher Education in Malaysia. Procedia - Social and Behavioral Sciences, 64, 284 – 290. doi: 10.1016/j.sbspro.2012.11.033
Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The multilevel and multifaceted character of computer self-efficacy: Toward clarification of the construct and an integrative framework for research. Information Systems Research,9 (2),126-163.doi.org/10.1287/ isre.9.2.126
Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O.-m., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59 (2), 551–568.
Midha, V. (2016). Cognitive Absorption: An Empirical Examination of 3-D Immersive Virtual World Users. Transactions on Replication Research, 2, 1-11.
Misao Shea, A. (2014). Student Perceptions of a Mobile Augmented Reality Game and Willingness to Communicate in Japanese. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Education in Learning Technologies.
Moos, D. C., & Azevedo, R. (2009). Learning with computer-based learning environments: a literature review of computer self-efficacy. Review of Educational Research, 79 (2), 576- 600.
Müller, M., Rassweiler ,M.C, Klein, J., Seitel, A., Gondan, M. Baumhauer , M., Teber, D., Rassweiler, J.J., Meinzer, H.P., &Hein,L.M. (2013). Mobile augmented reality for computer-assisted percutaneous Nephrolithotomy. Int J CARS, 8,663–675.
Newman, P. R. (1992). Conceptual models of student engagement. National Center of Effective Secondary Schools. University of Wisconsin.
Parr, G. D., Montgomery, M., & DeBell, C. (1998). Flow theory as a model for enhancing student resilience. Professional School Counseling, 1 (5), 26–31.
Patrick Rau,P.-L, Zheng,J., Guo, Z., & Li, J. (2018). Speed reading on virtual reality and augmented reality. Computers & Education,125,240-245.
Pfeffer, J. (1982) Organizations and Organization Theory, Pitman, Boston, MA,
Qteishat, M., Alshibly, H.H., Al-Ma’aitah, M. (2013). Factors Influencing the Adoption of E-Learning in Jordan: An Extended TAM Model. European Journal of Business andManagement,5 (18),84-100.
Rahimi, M., & Yadollahi, S. (2011). Computer anxiety and ICT integration in English classes among Iranian EFL teachers. Procedia Computer Science, 3, 203- 209.
Rathunde, K. (2003). A comparison of Montessori and traditional middle schools: Motivation, quality of experience, and social context. The NAMTA Journal, 28 (3), 13–52.
Renner,J.c. (2014). Does Augmented Reality Affect High School Students’ Learning Outcomes in Chemistry? A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctorate of Education, Grand Canyon University Phoenix, Arizona.
Reychav,I & Wu, D. (2015). Are your users actively involved? A cognitive absorption perspective in mobile training. Computers in Human Behavior. 44, 335-346.
Ronald Punako, Jr. (2018). Computer-Supported Collaborative Learning using Augmented and Virtual Reality in Museum Education. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Computing Technology in Education.
Saade, R. & Bahli. (2005). "The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model". Information and Management, 42,317–327.doi:10.1016/j.im.2003.12.013
Schein, E. H. (1980). Organizational Psychology, third edition, Prentice-Hall, Englewood Cliffs, NJ,
Schunk, D. H (1991); Self-efficacy and academic motivation. Educational Psychologist, 26 (3 & 4), 207-231.
Sedaghat, M., Abedin, A., Hejazi, E., & Hassanabadi, H. (2011). Motivation, cognitive engagement, and academic achievement. Procedia Social and Behavioral sciences, 15, 2406–2410. doi: 10.1016/j.sbspro.2011. 04.117
Serio, D. Ibanez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586–596.
Shapera, D. M., (2016). Exploring the Use of Augmented Reality to Support Cognitive Modeling in Art Education. A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy, Arisona State University.
Shernoff, D. J., Csikszentmihalyi, M., Shneider, B., & Shernoff, E. S. (2003).Student engagement in high school classrooms from the perspective of flow theory. School Psychology Quarterly, 18, 158–176.
Sommerauer, P., Müller, O. (2014). Augmented reality in informal learning environments: A field experiment in a mathematics exhibition. Computer & education,79, 59-68.
Tsai, P. S., Tsai, C. C., & Hwang, G. H. (2010). Elementary school students’ attitudes and self-efficacy of using PDAs in a ubiquitous learning context. Australasian Journal of Educational Technology, 26 (3), 297-308. https://doi.org/10.14742/ajet.1076
Wan, Z., Wang, Y., & Haggerty, N. (2008). Why people benefit from e-learning differently: The effects of psychological processes on e-learning outcomes. Information & Management, 45 (8),513–521. doi:10.1016/j.im. 2008.08.003
Wang, Y. S., Wu, M. C., & Wang, H. Y. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British journal of educational technology, 40 (1), 92-118. doi.org/10.1111/ j.1467-8535.2007.00809.x
Wang, Y.-S., Lin, H.-H. & Luarn, P. (2006) Predicting consumer intention to use mobile service. Information Systems Journal, 16, 157–179.doi.org/10.1111/j.1365-2575.2006.00-213.x
Wang,Y.,Ong,S.K.,&Nee,A.Y.C. (2018).Enhancing mechanisms education through interaction with augmented reality simulation. Comput Appl Eng Educ,1-13.
Weniger, S., Loebbecke, C. (2007). Cognitive absorption: literature review and suitability in the context of hedonic IS usage. Department of business, media and technology management, University of Cologne, Germany.
Whalen, S. P. (1998). Flow and the engagement of talent: Implications for secondary schooling. National Association of Secondary School Principals. NASSP Bul-
Wojcik,M. (2015) Potential use of Augmented Reality in LIS education. Educ Inf Technol. Springer Science+Business Media New York 2015.
Yang,S., Mey,B., & Yue,X. (2018). Mobile Augmented Reality Assisted Chemical Education: Insights from Elements 4D.journal of Chemical Education,1-3.
Zaff, J. F., Kawashima-Ginsberg, K., Lin, E. S., Lamb, M., Palsano, A., & Lerner, R. M. (2011). Developmental trajectories of civic engagement across adolescence: Disaggregation of an integrated construct. Journal of Adolescence, 34 (6), 1207–1220. doi: 10.1016/j.adolescence.2011.07.005
Zhang, P., Li, N. & Sun, H. (2006). Affective Quality and Cognitive Absorption: Extending Technology Acceptance Research, in: Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS) 2006, IEEE Computer Society (ed.), IEEE Computer Society, Big Island, 207-217. doi: 10.1109/ HICSS. 2006. 39·Source: IEEE Xplore.